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Topic 1 : Series & Approximations 

 

COURSEWORK 1 
Appendices referenced as [number] 

 
Part A: The Source Data 
 
The curve chosen to study is the Walt Disney Castle. The original inspiration 
for the curve was taken from Image 1. This curve was then modified using 
Adobe Illustrator for it to obey Dirichlet’s conditions i.e make it piece-wise 
continuous and the final curve to be used was the one shown in Image 2. 

 
 
 
 
 

 
The reason this curve was chosen was because on simplification (Image 3) it 
can be observed that it tends to form a very interesting asymmetrical step 
path which can be used to create aesthetical tessellations to be used in a 
design (Image 4).  
 
 
 
 
 
 

Image 1: Walt Disney Castle Image 2: Modified Walt Disney Castle 

Image 3: Simplified Castle Outline Image 4: Walt Disney Castle tessellated tiles[1] 

CANDIDATE CODE : KYBS6 
 



Part B: Digitization 
 

 
STEP 1-TRACE CURVE ON RHINO 
To obtain Data Points of the selected curve, Image 2 was 
imported to Rhino and the curve was traced using the polyline 
tool to reveal an outline of the curve. 
 
STEP 2-SCALE THE CURVE TO FIT INDEPENDENT VARIABLES 
FROM 0 TO 2π  
Using Grasshopper, a line of 2π units is created and baked. The 
polyline curve is then scaled down to this line. 
 
STEP 3-PRODUCE COORDINATES OF THE CURVE 
The line is then divided into different parts (controlled by a slider) and 
vertical lines are generated from these points. The points of intersection 
of these vertical lines with the polyline curve are recorded in a panel 
with separated x and y coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STEP 4-EXPORTING TO EXCEL 
The values recorded in the panel are copied and pasted onto 
an excel sheet which is later uploaded onto MATLAB to be 
used in a code. These values have been recorded in an excel 
sheet attached titled ‘Fourier_Approximation_Values.xlsx’. 
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Image 5: Digitization of points on Rhino using Grasshopper [1] 
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Part C: Modelling 
 
The Fourier Approximation for the selected curve is carried out using the 
‘Numerical Harmonic Analysis’ Method and computed using MATLAB. 
 
At first the number of Data Points collected (m) from the chosen curve is 
recorded. 
 
m = 286 
 
The data points are represented by xi and yi wherein xi represents the array of 
x coordinates and yi represents the array of the y coordinates.  
 
Then, the total number of iterations of the Fourier Approximation (n) is 
decided. 
 
In order to calculate the Fourier Approximation, the Fourier coefficients a0 , an 
and bn are evaluated using the following equations: 
 
a0 = 2/m ( ∑ y!"

!"#$ ) 
 
an = 2/m (( ∑ y!"

!"#$ 	cos	(nx!))  
 
bn = 2/m ((	∑ y!"

!"#$ 	sin	(nx!)) 
 
Here an and bn are evaluated using ‘for loops’ in MATLAB. 
 
The Fourier Approximation (fn(xi)) is calculated then using the following 
equation: 
 
fn(xi) ≃ a0/2. + ∑ (a%cos	(nx!) + b%sin%

&%#$ (nx!)) 
 
Then the quality of the model is assessed on the basis of the difference 
between the Fourier Approximations generated and the individual Data Points 
and are represented by Vi. 
 
Vi = yi - fn(xi) 
 
 
 



We also calculate the RMS of fit: 
 

RMS of fit = 0∑ ()!)"	#
!#$%

"
 

 
 
Initially, the number of iterations taken was 20, i.e., n = 20  
 
The following results were obtained[3]: 
 
a0 = 4.5452  (remains constant for all values of n) 
an = an array of 20 values 
bn = an array of 20 values 
fn(xi) = an array of 286 values 
 
We plot the values of the Fourier Approximation alongside the original curve 
(Image 7). 
 
The Vi values obtained are plotted to show the deviation of the Fourier 
Approximated values from the original Data Points (Image 8). 
 
These values go upto 0.5 indicating that the Fourier Approximation is not yet 
extremely accurate. 
 
 

 
 
 
 
 
 
 
 
 
 
 
The RMS of fit = 0.1259 
 
 
For the number of iterations taken as 100, i.e., n = 100 we obtained the 
following results[4]: 

Image 7  Image 8  



 
We plot the values of the Fourier Approximation alongside the original curve 
(Image 9). 
 
The Vi values obtained are plotted to show the deviation of the Fourier 
Approximated values from the original Data Points (Image 10). 
 
These values are significantly less that the previous case as the go upto a 
highest of about 0.2. So we can observe as we increase the value of ‘n’, the 
quality of approximation improves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The RMS of fit = 0.0432 
 
The number of iterations (n) were adjusted and it was observed that the 
lowest value for RMS of fit was recorded at n = 143 
 
For the number of iterations taken as 143, i.e., n = 143 we obtained the 
following results[5]: 
 
 
 
 
 
 
 
 
 
 
 

Image 9  Image 10  

Image 11: Original Curve From Data Points Image 12: Curve From Fourier Approximation 



 
 
 
 
 
 
 
 
 
The Vi values obtained are plotted to show the deviation of the Fourier 
Approximated values from the original Data Points (Image 14). 
 
These are significantly lower than the ones observed for n=20 and n=100. 
 
 
 
 
 
 
 
 
 
 
 
 
The RMS of fit = 0.0182. 
 
This low value of RMS of fit suggests that the difference between the actual 
data point values and the Fourier Approximation values is low (with a 
maximum of 0.04), and hence we can access the quality of the curve to be 
good.  
 
The values of an, bn, fn(xi) and Vi have been recorded in an excel sheet 
attached by the name of ‘Fourier_Approximation_Values.xlsx’. 
 
It was noted that while adjusting the number of iterations (n), the lowest value 
for the RMS of fit, i.e., the most accurate Fourier Approximation occurred 
when the number of iterations was exactly half of the total number of Data 
Points, that is, when n = m/2. 
 
 

Image 13: Comparison of Original Curve and Fourier Curve 

Image 14 



Part D: Curve Generation 
 
The Fourier curve obtained in Part C is then transposed and plotted from x 
values 0 to 8π [6]. This is demonstrated in Image15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Image 15 



Appendix  
 
1. Tessellated Tile : Example of an application of using the selected curve in a 
design: 

 
 
2. Grasshopper Code For Generating Data Points: 
 
 
 
 
 
 
 
 
 
 
3. Matlab Code for n = 20 
 
% Upload data of the coordinates of the castle from Excel onto MATLAB 
% Name it 'castle_coordinates' 
  
xl_filename = fullfile(pwd,'DATASETS','Disney_castle_coordinates.xlsx'); 
castle_coordinates = xlsread(xl_filename); 

Assigning Curve to Geometry 

Making a line from 0 to 2𝜋	 

Dividing the curve into ‘m’ points	 

Obtaining the coordinates 



  
% Separate x and y coordinates and  
  
x = (castle_coordinates(:,1))'; 
y = (castle_coordinates(:,2))'; 
  
% Define 'm' as the total number of data points collected  
  
m = length(castle_coordinates); 
  
% Define 'n' as the number of iterations 
  
n = 144; 
  
% Define Fourier Coefficient a_0  
  
a_0 = (2/m)*sum(y); 
  
% Defining a loop to obtain values of Fourier Coefficients a_n and b_n 
  
for in = 1:n 
     
    s_an = 0; 
    s_bn = 0; 
     
    for im = 1:m 
         
    s_an = s_an + ((y(im))*cos(in*(x(im)))); 
    s_bn = s_bn + ((y(im))*sin(in*(x(im)))); 
     
    end 
   an(in) = (2/m)*(s_an); 
   bn(in) = (2/m)*(s_bn); 
    
end 
  
% Carry our fourier harmonic analysis by defining the fourier expansion 
  
fn(im) = 0; 
  
 for jm = 1:m 
     
    s_fn = a_0/2 ; 
     
    for jn = 1:n 
  
    s_fn = s_fn + (an(jn)*(cos(jn*x(jm)))+(bn(jn)*sin(jn*x(jm)))) ; 
     
    end 
    fn(jm) = s_fn; 
 end  
  
% Plot the castle_coordinates and fourier approximation on the same graph 
  
f1 = figure; 
hold on 
  
plot(x,y,'r') 



plot (x,fn,'g') 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Comparison of Actual Data Points Along With The Fourier 
Approximation (n=20)') 
legend ('Actual Data Points','Fourier Approximation') 
  
hold off 
  
% Assessing the quality of the Fourier Model using the difference between 
% the series to the nth term and the actual data points 
  
for im = 1:m 
    V_i(im) = y(im) - fn(im); 
end 
  
% Plotting the diff 
  
f2 = figure; 
hold on 
  
plot (x, V_i) 
line(xlim(), [0,0]) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Difference Between The Points From The Fourier Approximation And 
The Data Points (n=20)') 
  
hold off 
  
% Calculating the RMS of fit 
  
rms_fit = sqrt((sum ((V_i).^2)/m)); 
 
 
4. Matlab Code for n = 100 
 
xl_filename = fullfile(pwd,'DATASETS','Disney_castle_coordinates.xlsx'); 
castle_coordinates = xlsread(xl_filename); 
  
% Separate x and y coordinates  
  
x = (castle_coordinates(:,1))'; 
y = (castle_coordinates(:,2))'; 
  
% Define 'm' as the total number of data points collected  
  
m = length(castle_coordinates); 
  
% Define 'n' as the number of iterations 
  
n = 143; 
  
% Define Fourier Coefficient a_0  
  



a_0 = (2/m)*sum(y); 
  
% Defining a loop to obtain values of Fourier Coefficients a_n and b_n 
  
for in = 1:n 
     
    s_an = 0; 
    s_bn = 0; 
     
    for im = 1:m 
         
    s_an = s_an + ((y(im))*cos(in*(x(im)))); 
    s_bn = s_bn + ((y(im))*sin(in*(x(im)))); 
     
    end 
   an(in) = (2/m)*(s_an); 
   bn(in) = (2/m)*(s_bn); 
    
end 
  
% Carry our fourier harmonic analysis by defining the fourier expansion 
  
fn(im) = 0; 
  
 for jm = 1:m 
     
    s_fn = a_0/2 ; 
     
    for jn = 1:n 
  
    s_fn = s_fn + (an(jn)*(cos(jn*x(jm)))+(bn(jn)*sin(jn*x(jm)))) ; 
     
    end 
    fn(jm) = s_fn; 
 end  
  
% Plot the castle_coordinates and fourier approximation on the same graph 
  
f1 = figure; 
hold on 
  
plot(x,y,'r') 
plot (x,fn,'g') 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Comparison of Actual Data Points Along With The Fourier 
Approximation (n=100)') 
legend ('Actual Data Points','Fourier Approximation') 
  
hold off 
  
% Assessing the quality of the Fourier Model using the difference between 
% the series to the nth term and the actual data points 
  
for im = 1:m 
    V_i(im) = y(im) - fn(im); 
end 



  
% Plotting the diff 
  
f2 = figure; 
hold on 
  
plot (x, V_i) 
line(xlim(), [0,0]) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Difference Between The Points From The Fourier Approximation And 
The Data Points (n=100)') 
  
hold off 
  
% Calculating the RMS of fit 
  
rms_fit = sqrt((sum ((V_i).^2)/m)); 
 
 

5. Matlab Code for n = 143 
 
% Sara Motwani 
% Coursework 1 Series and Approximations 
  
% Upload data of the coordinates of the castle from Excel onto MATLAB 
% Name it 'castle_coordinates' 
  
xl_filename = fullfile(pwd,'DATASETS','Disney_castle_coordinates.xlsx'); 
castle_coordinates = xlsread(xl_filename); 
  
% Separate x and y coordinates and  
  
x = (castle_coordinates(:,1))'; 
y = (castle_coordinates(:,2))'; 
  
% Plot the castle_coordinates to reveal the castle shaped graph 
f1 = figure; 
hold on 
  
plot(x,y) 
scatter(x,y) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Curve Of The Walt Disney Castle') 
  
hold off 
  
% Define 'm' as the total number of data points collected  
  
m = length(castle_coordinates); 
  
% Define 'n' as the number of iterations 
  
n = 143; 
  



% Define Fourier Coefficient a_0  
  
a_0 = (2/m)*sum(y); 
  
% Defining a loop to obtain values of Fourier Coefficients a_n and b_n 
  
for in = 1:n 
     
    s_an = 0; 
    s_bn = 0; 
     
    for im = 1:m 
         
    s_an = s_an + ((y(im))*cos(in*(x(im)))); 
    s_bn = s_bn + ((y(im))*sin(in*(x(im)))); 
     
    end 
   an(in) = (2/m)*(s_an); 
   bn(in) = (2/m)*(s_bn); 
    
end 
  
% Carry our fourier harmonic analysis by defining the fourier expansion 
  
fn(im) = 0; 
  
 for jm = 1:m 
     
    s_fn = a_0/2 ; 
     
    for jn = 1:n 
  
    s_fn = s_fn + (an(jn)*(cos(jn*x(jm)))+(bn(jn)*sin(jn*x(jm)))) ; 
     
    end 
    fn(jm) = s_fn; 
 end  
  
% Plotting the fourier approximation 
  
f2 = figure; 
hold on 
  
plot (x,fn) 
scatter (x,fn) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Graphical Representation of the Fourier Approximation of the Disney 
Castle Curve') 
  
hold off 
  
% Plot the castle_coordinates and fourier approximation on the same graph 
  
f3 = figure; 
hold on 
  



plot(x,y,'r') 
plot (x,fn,'g') 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Comparison of Actual Data Points Along With The Fourier 
Approximation') 
legend ('Actual Data Points','Fourier Approximation') 
  
hold off 
  
% Assessing the quality of the Fourier Model using the difference between 
% the series to the nth term and the actual data points 
  
for im = 1:m 
    V_i(im) = y(im) - fn(im); 
end 
  
% Plotting the diff 
  
f4 = figure; 
hold on 
  
plot (x, V_i) 
line(xlim(), [0,0]) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Difference Between The Points From The Fourier Approximation And 
The Data Points') 
  
hold off 
  
% Calculating the RMS of fit 
  
rms_fit = sqrt((sum ((V_i).^2)/m)); 
  
 
6. Matlab Code For Part D 
 
% Plotting the curve from 0 to 8pi 
  
f5 = figure; 
hold on 
  
plot (x,fn, 'r') 
plot (x+(2*pi),fn,'r') 
plot (x+(4*pi),fn,'r') 
plot (x+(6*pi),fn, 'r') 
  
line(xlim(), [0,0]) 
  
xlabel ('X coordinates of the curve') 
ylabel ('Y coordinates of the curve') 
title ('Disney Castle Recurring Curve') 
  
hold off 


