

BARC0168: SENSE, SENSING AND CONTROLS COURSEWORK 1 : Data Analysis and Control Strategies

MEng Engineering and Architectural Design 2022-23

Candidate Code : WRGD1 Student Number : 20074993

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. THE MODEL
 - 2.1. HOSPITAL WARD
 - 2.2. INPUT PARAMETERS
- 3. THE METHOD
 - 3.1. DESCRIPTION OF ITERATIONS
- 4. BASELINE MODEL
- 5. ITERATION 1 : ALTERATION IN VENTILATION SCHEDULE
- 6. ITERATION 2 : CO₂ DEMAND CONTROL VENTILATION
- 7. ITERATION 3 : PARTICULATE CONTROLLED VENTILATION
- 8. ITERATION 4 : COMBINED CO2 AND PARTICULATE CONTROLLED

VENTILATION

- 9. ITERATION 5 : REAL OCCUPANCY BEHAVIOUR
- **10. ENERGY CONSUMPTION**
- 11.CONCLUSION
- 12. REFERENCES

1. INTRODUCTION

This report investigates the indoor environmental air quality (IAQ) and energy use of a hospital ward in Berlin through various ventilation strategies. Initially, ventilation has been modelled to a fixed occupancy schedule, and further investigations based on levels of CO2, indoor pollutants and occupancy illustrate the factors affecting this model. To determine the most accurate and efficient ventilation strategy, these methods can be comparatively assessed and presented through this report.

2. THE MODEL

2.1 HOSPITAL WARD

In relation to the issue of bed spacing for multi-bedded rooms, the current advice remains unchanged. That is, taking account of ergonomic criteria, primarily the space required for patient handling and other activities which take place in the immediate vicinity of the bed, it is recognised that the minimum bed space should not be less than 3.6m wide x 3.7m deep. (Atkins, 2010)

Assuming a ward with 6 beds, the following plan can be assumed of the hospital ward. This has a maximum of 18 people, assuming that for each patient there may be 2 extra people, either visitors or doctors/nurses.

Figure 1 PLAN AND SECTION OF MODELLED HOSPITAL WARD WITH POSITIONED SENSORS

2.2 INPUT PARAMETERS (CIBSE, 2015)

DIMENSIONS						
Floor Area	82.08	m²				
Volume	262.66	m ³				
Total Surface Area	281.92	m²				
0	CCUPANCY					
Maximum Occupancy	18	lqq				
Intermediate Occupancy	14	lqq				
Minimum Occupancy	6	lqq				
Fresh Air	10	l/s/p				
Infiltration	0.4	h ⁻¹				
Emission Rate	5.56	m³/h m²				
	TIME					
Timesteps	900	seconds				
PA	RTICULATES					
Filtration Efficiency	0.8					
Resuspension rate of particles	0.000015	h ⁻¹				
L _{f1}	500000	mg/m ²				
Deposition velocity (PM _{2.5})	1.2	m/h				
Deposition velocity (NO ₂)	0.72	m/h				
CO ₂ Generation Rate	20	ppm				

Table 1 INPUT PARAMETERS

3. THE METHOD

The analysis is conducted for only 2 weeks due to aid technical efficiency. The time period selected have been from Monday, 19 May until Sunday, 1 June.

Analysis of ventilation and IAQ was chosen because the room type was a hospital ward which has the good health of patients and workers as a priority. Extended exposure to CO₂ can cause dizziness, difficulty breathing, increased heart rate, and high blood pressure (Health and Safety Executive, n.d.). Exposure to NO₂ can lead to respiratory symptoms, airway inflammation, decreased immune defence, and susceptibility to respiratory infection. PM_{2.5} exposure has short-term effects on respiratory health and can hinder the healing ability of hospital patients. We will compare different ventilation control methods to find the most energy-efficient and balanced approach to improving indoor air quality. (WHO, n.d.)

The model aims to develop an appropriate ventilation strategy for the most optimized internal air quality.

3.1 DESCRIPTION OF ITERATIONS

- 1. BASELINE : Baseline simulations are run with the initial Berlin weather data and a basic occupancy schedule for a hospital ward.
- 2. ITERATION 1 : The ventilation schedule (ACH-Air change rate per hour) is altered with respect to the set occupancy schedule.
- 3. ITERATION 2 : CO₂ demand control ventilation is applied wherein the ACH is increased with reference to high internal CO₂ values.
- 4. ITERATION 3 : Previously increased ventilation may lead to increased particulates within the space; hence, ventilation strategy is altered to lower AER at high particulate concentration in the space.
- 5. ITERATION 4 : Re-adjusted ventilation strategy may result in elevated CO₂ levels which is controlled by increasing ACH with reference to high internal CO₂ values.
- 6. Real Occupant Profiles

4. BASELINE MODEL

A baseline model is first set-up to study and analyze the building natural interaction with the environment and then subsequently evaluate appropriate strategies for the further optimization of the model.

m

The baseline model uses a basic occupancy set-up for a hospital ward with 6 beds.

No. of People	6	14	18	14	6		
Time	12 am – 8 am	8 am – 10 am	10 am – 6 pm	6 pm – 8 pm	8 pm – 12 am		
Table 2 OCQUPANCY SOHEDULE							

Volumetric Ventilation Rate, \mathbf{q} (m³/s)

q = (ACH . Volume)/3600

where,

ACH: Air Change Rate per hour (h⁻¹)

Rate of CO_2 generation, G

G = occupancy x emission rate

Internal CO₂ concentration at time 'n', C_i(n) (ppm)

 $C_i(n) = C_e(n) + (G/q) + (C_i(n-1) - C_e(n) - (G/q))e^{-(q/volume)t}$

where, $C_e(n)$: External Concentration at time 'n'(ppm) t: Timestep

The volumetric ventilation rate is calculated based on the set occupancy schedule which is then used to model internal CO_2 concentrations.

Figure 3 COMPARING INTERNAL AND EXTERNAL CO2 CONCENTRATIONS

BASELINE						
Category	Range	Frequency	%Simulated			
IDA1	<400	621	24.0139211			
IDA2	400-600	621	24.0139211			
IDA3	600-1000	1344	51.9721578			
IDA4	>1000	0	0			

Table 3 ASSESSING CO2 CONCENTRATIONS

The internal CO_2 were calculated using the mean of external CO_2 concentration, and adding the stated concentration.

The internal CO_2 levels are at an average between 800-950 ppm and show a steady pattern of fluctuation in synergy with the occupancy schedule.

The external CO_2 levels are mostly steady but it is difficult to understand the yearly trend from just a time period of 2 weeks. In the plotted data, a peak in external CO_2 levels is observed and this peak is reflected in the internal CO_2 levels.

More than half of the modelled CO_2 concentrations lie in the 'moderate indoor air quality band'.

Calculating internal concetration of particulate matter, i.e., NO2 and PM2.5

Internal NO₂ concentration, NO₂_in (mg/m³)

NO₂_in = (λ_v f C_o) / ((v_d x A/volume)+ λ_v)

where,

A: Floor Area (m²)

 λ_v : Air Change Rate (h⁻¹)

f: Filtration efficiency (taken 0.8 assuming little infiltration)

v_d: Deposition velocity (0.74 m/h)

Internal PM_{2.5} concentration, PM_{2.5}_in (mg/m³)

PM_{2.5}_in =($L_{f1}A_{f1}R + \lambda_v$.P.volume.C_o + G) / ($A_dv_d + \lambda_v$ volume)

where,

 L_{f1} : mass loading of particles on accessible floor surfaces (500000 mg/m²)

A_{f1}: Floor Area (m²)

R: Resuspension rate of particles from floor (0.000015h⁻¹)

P: Penetration factor of outdoor particles

C_o: Outdoor concentration of particulates (mg/m3)

G: Indoor particle generation rate (μ g/h).

Ad: Particle deposition surface area

v_d: Deposition velocity (1.2 m/h)

Figure 4 INDOOR NO2 LEVELS

The indoor NO_2 levels compared with the WHO standards illustrate that the internal NO_2 levels are for the majority within the safety limit except for a few peaked values.

The indoor $PM_{2.5}$ levels compared with the WHO standards illustrate that the internal $PM_{2.5}$ levels show some high peaks which can be unsafe

Figure 5 INDOOR PM2.5 LEVELS

5. ITERATION 1 : ALTERATION IN VENTILATION SCHEDULE

The ventilation rates are changed with a slight step, i.e., the ventilation increases a little before the actual increase in the occupancy according to the set schedule. Additionally, it is generally improbable that occupancy sensors link to the ventilation control system of a building, hence altering the ventilation schedule according to the set expected occupancy schedule might be a useful strategy.

IIIII

Figure 6 INTERNAL CO2 COMPARISONS

The changed schedule results in a sudden drop in CO_2 right before the increase in daily occupancy and a sudden peak right after the daily decrease in occupancy. There is however, an increase in the frequency of internal CO_2 in the high and medium IAQ band.

		BAS	ELINE	ITERATION 1		
Category	Range	Frequency	%Simulated	Frequency	%Simulated	
IDA1	<400	621	24.0139211	625	24.3569758	
IDA2	400-600	621	24.0139211	625	24.3569758	
IDA3	600-1000	1344	51.9721578	1316	51.2860483	
IDA4	>1000	0	0	0	0	

Table 4 ASSESSING CO2 CONCENTRATIONS

Figure 9 INDOOR NO2 LEVELS

Figure 8 INDOOR PM2.5 LEVELS

The indoor particulate concentrations (NO $_2$ and PM $_{2.5}$) show very negligible change from the baseline model.

6. ITERATION 2 : CO₂ DEMAND CONTROL VENTILATION

Iteration 1 yielded dangerously high peaks of internal CO_2 concentrations which may cause issues. To normalize these peaks, the ventilation (ACH) is increased by 0.5 h⁻¹ whenever to internal CO_2 concentration exceeds 800 ppm. 800 ppm was taken as a cut off mean value after analysing data from iteration 1.

		BASELINE		ITERA	TION 1	ITERATION 2	
Category	Range	Frequency	%Simulated	Frequency	%Simulated	Frequency	%Simulate
IDA1	<400	621	24.01	625	24.36	1161	31.67
IDA2	400-600	621	24.01	625	24.36	1161	31.67
IDA3	600-1000	1344	51.97	1316	51.29	1344	36.67
IDA4	>1000	0	0	0	0	0	0

Table 5 ASSESSING CO2 CONCENTRATIONS

After Iterating, it is evident that the peaks from the previous iteration have considerably normalized, and the general trend of internal CO₂ concentrations are now lower than both the baseline and iteration 1.

This is more evidently observed as the internal CO_2 concentrations have reduced by nearly 20% in the moderate IAQ band and increased by over 5% in the high and medium IAQ bands.

IIIII

Figure 12 INDOOR NO2 LEVELS

Figure 11 INDOOR PM2.5 LEVELS

However, due the increased ventilation rates, the particulate concentration has seen a slight increase. This is clearly evident from the above graphs wherein the yellow line is demonstrating the concentrations of the present iteration.

7. ITERATION 3 : INDOOR PARTICULATE CONTROLLED VENTILATION

Iteration 2 yielded elevated levels of indoor particulate concentrations (both NO₂ and PM_{2.5}) due to increased ventilation as a strategy to reduce internal CO₂ concentrations. Additionally, the internal PM_{2.5} concentrations are considerably over the WHO health standards for indoor PM_{2.5}. Hence, in this iteration the ACH from iteration 2 is further iterated to reduce by half its value whenever the internal PM_{2.5} concentrations from iteration 2 exceed 10 ppm (WHO standard).

Figure 13 INTERNAL CO2 COMPARISONS

		BAS	ELINE	ITERATION 1		ITERATION 2		ITERATION 3	
Category	Range	Frequency	%Simulated	Frequency	%Simulated	Frequency	%Simulated	Frequency	%Simulated
IDA1	<400	621	24.01	625	24.36	1161	31.67	1056	31.48
IDA2	400-600	621	24.01	625	24.36	1161	31.67	1056	31.48
IDA3	600-1000	1344	51.97	1316	51.29	1344	36.67	1242	37.03
IDA4	>1000	0	0	0	0	0	0	0	0
	T								

Table 6 ASSESSING CO2 CONCENTRATIONS

The general trend of CO₂ concentrations has reduced the most during this iteration, however, extremely high peaks can also be noticed. These values are probably due to the reduced ventilation at timestamps wherein the particulate concentration was a dangerous level.

Given the high peaks, there is a slight increase in the percentage of moderate IAQ even though the overall trend is much lower than the previous iterations.

IIIII

Figure 15 INDOOR NO2 LEVELS

Since the strategy focused on reducing indoor particulate concentration, it has succeeded and there is a visible reduction in both the NO_2 and the $PM_{2.5}$ values.

8. ITERATION 4 : COMBINING CO2 AND PARTICULATE CONTROLLED VENTILATION

Iteration 3 yielded a generally lowered internal CO₂ levels with the exception of certain high peaks that predictably occur at points of previously elevated PM_{2.5} concentrations. In order to normalize these peaks on internal CO₂ concentrations while also maintaining the lowered particulate matter concentrations, in iteration 4, the ACH from iteration 3 is further iterated to reduce by 0.5 h⁻¹ at points where the internal CO₂ from iteration 3 exceeds 700 ppm. 700 ppm was taken as a cut off mean value after analyzing data from iteration 3.

^{18/05/91 0:00 20/05/91 0:00 22/05/91 0:00 24/05/91 0:00 26/05/91 0:00 28/05/91 0:00 30/05/91 0:00 01/06/91 0:00 03/06/91 0:00} Figure 16 INTERNAL CO2 COMPARISONS

		BAS	ELINE	ITERATION 1		ITERATION 2		
Category	Range	Frequency	%Simulated	Frequency	%Simulated	Frequency	%Simulated	
IDA1	<400	621	24.01	1161	31.67	625	24.36	
IDA2	400-600	621	24.01	1161	31.67	625	24.36	
IDA3	600-1000	1344	51.97	1344	36.67	1316	51.29	
IDA4	>1000	0	0	0	0	0	0	
		ITERA	TION 3	ITERA	TION 4	This iterat	tion vields	
Category	Range	ITERA Frequency	TION 3 %Simulated	ITERA Frequency	TION 4 %Simulated	This iterat	tion yields results in	
Category IDA1	Range <400	ITERA Frequency 1056	TION 3 %Simulated 31.48	ITERA Frequency 1295	TION 4 %Simulated 32.92	This iterat the best r terms of i	tion yields results in nternal CO	
Category IDA1 IDA2	Range <400 400-600	ITERA Frequency 1056 1056	TION 3 %Simulated 31.48 31.48	ITERA Frequency 1295 1295	TION 4 %Simulated 32.92 32.92	This iterat the best r terms of i concentra	tion yields esults in nternal CO ations. The	
Category IDA1 IDA2 IDA3	Range <400 400-600 600-1000	ITERA Frequency 1056 1056 1242	TION 3 %Simulated 31.48 31.48 37.03	ITERA Frequency 1295 1295 1344	TION 4 %Simulated 32.92 32.92 34.16	This iterat the best r terms of i concentra general tr	tion yields results in nternal CO ations. The end is the	
Category IDA1 IDA2 IDA3 IDA4	Range <400 400-600 600-1000 >1000	ITERA Frequency 1056 1056 1242 0	TION 3 %Simulated 31.48 31.48 37.03 0	ITERA Frequency 1295 1295 1344 0	TION 4 %Simulated 32.92 32.92 34.16 0	This iterat the best r terms of i concentra general tr lowest fro	tion yields results in nternal CO ations. The end is the om all other	

Table 7 ASSESSING CO2 CONCENTRATIONS

Its also shows the highest percentage within the high and medium IAQ bands out of all the iterations.

iterations and it presents itself with no particularly high peaking values of internal CO₂.

IIIII

Figure 18 INDOOR NO2 LEVELS

The particulate concentrations are not lower than iteration 3 but are considerably lower than all other iterations.

9. ITERATION 5 : REAL OCCUPANCY BEHAVIOUR

The previous iterations are all repeated with a new random occupancy instead of a fixed occupancy schedule. However, the new 'real occupancy' is created from the occupancy schedule and it a random number between the minimum occupancy and the occupancy in each slot of the schedule. This gives a more real idea of a predicted occupancy withing the ward.

Figure 19 CREATING REAL OCCUPANCY

Using real occupancy schedules provides more randomness to the model and this models a more comfortable internal environment since the occupancy does not often reach 100%, so the methods used are more efficient in removing internal CO₂ while also keeping out particulates.

18/05/91 0:00 20/05/91 0:00 22/05/91 0:00 24/05/91 0:00 26/05/91 0:00 28/05/91 0:00 30/05/91 0:00 01/06/91 0:00 03/06/91 0:00 Figure 20 INTERNAL CO2 COMPARISONS

		BAS	SELINE	ITERATION 1		ITER	ATION 2
Category	Range	Frequency	%Simulated	Frequency	%Simulated	Frequency	%Simulated
IDA1	<400	810	27.33	1219	32.23	801	27.21
IDA2	400-600	810	27.33	1219	32.23	801	27.21
IDA3	600-1000	1344	45.34	1344	35.54	1342	45.58
IDA4	>1000	0	0	0	0	0	0
		ITER	ATION 3	ITER	ATION 4		
Category	Range	Frequency	%Simulated	Frequency	%Simulated		
IDA1	<400	1002	30.91	1294	32.91		
IDA2	400-600	1002	30.91	1294	32.91		
IDA3	600-1000	1238	38.19	1344	34.18		
IDA4	>1000	0	0	0	0		

Table 8 ASSESSING CO2 CONCENTRATIONS

As in the scheduled occupancy case, iteration 4 yields the best results in terms of internal CO_2 concentrations and has the highest percentages in the high and medium IAQ bands.

10. ENERGY CONSUMPTION

Lastly, alterations to the ventilation lead to changes in the energy use and consumption, below displays the total heat loss due to ventilation, this is calculated by:

H_vent = 1/3*ACH*volume

Scheduled Occupancy

Strategy	Baseline	Iteration 1	Iteration 2	Iteration 3	Iteration 4
H_vent	242290.944	242290.944	297842.688	228419.712	269175.168

Random Occupancy

Strategy	Baseline	Iteration 1	Iteration 2	Iteration 3	Iteration 4	
H_vent	199486.944	242290.944	280376.064	217905.92	269175.168	

Table 9 COMPARATIVE ENERGY CONSUMTIONS

The maximum energy consumption occurs during Iteration 2, i.e. CO₂ demand control ventilation whereas the baseline along with Iteration 3, i.e. particulate controlled ventilation use lower energy. Iteration 1, schedule change, followed by Iteration 4, combined strategy, are moderate in terms of energy consumption.

11. CONCLUSION

In conclusion, iteration 4 provides the most realistic and comfortable IAQ, even though it also leads to the higher energy consumption and is very dependent on the occupancy behaviour, showing that even though extensive modelling can be done to optimise conditions and energy consumption, the occupants have the biggest impact. Having only been modelled over two weeks in the moderate weather, this model would show very different results in the extreme heat and cold temperatures, therefore if this were being used to implement different strategies in the building control it would need to be completed at least over each season, looking at summer and winter design weeks as well. Furthermore, although this provides an insight into the IAQ, there are other factors and pollutants that would impact the indoor air quality, which can be assumed to follow the same patterns as CO2 and outdoor pollutants.

12. REFERENCES

- Atkins, A. (2010). Hospital Wards Layouts. [online] NHS Scotland. Available at: https://www.nss.nhs.scot/media/2007/shpn-04-01-v1-oct-2010_ailsaatkinson.pdf).
- 2. Butcher, K. and Chartered Institution Of Building Services Engineers (2011). Natural ventilation in non-domestic buildings. London: Cibse.
- CIBSE (2015). Environmental design : CIBSE guide A. London: Chartered Institution Of Building Services Engineers.
- 4. Health and Safety Executive (n.d.). General hazards of Carbon Dioxide. [online] www.hse.gov.uk. Available at:

https://www.hse.gov.uk/carboncapture/carbondioxide.htm.

- Natural ventilation in non domestic buildings : CIBSE application manual AM10: 1997. (1997). London: Cibse.
- UK, N. (2017). Air Pollution. [online] NHS . Available at: https://www.nhs.uk/conditions/air-pollution.
- WHO (n.d.). Health Effects of Particulate Matter. [online] World Health Organisation. Available at: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Healtheffects-of-particulate-matter-%20final-Eng.pdf.
- 8. Wisconsin Department of Health Services. (2018). Carbon Dioxide. [online] Available at:

https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm#:~:text=Exposure%20 to%20CO2%20c [Accessed 26 Apr. 2023].

9. World Health Organisation (2019). Air Pollution and Health. [online] World Health Organisation. Available at: https://www.euro.who.int/en/health-topics/environmentand-health/air-quality/c..